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General Introduction

https://oxij.org/thesis/PhD/ 2 / 79

https://oxij.org/thesis/PhD/


History of Computing Hardware
Programs as linear sequences of instructions

▶ Colossus (1943-1945), early revisions of ENIAC (1945-1955):
programmed using plugboards and mechanical switches.

▶ IBM 650 (1953-1969), the first mass-produced computer:
each instruction’s operation code (opcode) had to explicitly
specify the address of the next instruction (similarly to how
jump instructions of modern Assembly languages do).
(Fun fact: theoretically speaking, modern CPUs implicitly incrementally transform programs they execute

into continuation passing style (CPS), IBM 650 does not.)

Recursive subroutines
▶ PDP-11 (1970-1990): the first computer with proper

hardware support for subroutine calls of non-fixed-level nesting
depth (that is, supporting recursion and arbitrary modularity).

Together
Immediately after: UNIX, the C programming language, and the
rest of modern computing.
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History of Programming Languages

The first two high-level programming languages:
▶ FORTRAN: initially developed by John Backus at IBM (for

IBM 704) around 1956 (first compiler in 1957)
▶ LISP initially developed by John McCarthy at MIT around the

same time (first specified in 1958, first universal interpreter
implemented by Steve Russell for IBM 704 around 1960, first
compiler written in LISP in 1962).

(Fun fact: car and cdr of LISP are names of IBM 704 assembly language macros that were used to

implement those operations.)
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History of Programming Languages

These gave birth to two language families:
▶ Imperative compiled strictly-typed languages (FORTRAN,

ALGOL, C, etc).
▶ Straightforward attempts to make universal high-level

“Assembly” languages.
▶ Designed to be efficiently compiled into programs efficiently

computable on real hardware.

▶ Functional interpreted dynamically-typed languages (LISP,
Common LISP, Scheme, etc).

▶ Adaptations of 𝜆-calculus to practical programming and
meta-programming.

▶ Designed to have as much expressive power as possible,
computational efficiency was a secondary concern.
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History of Programming Languages

Descendants of those “evolved” by mutation and exchange of ideas.
Two very successful “cross-bred” new language families were
produced as the result:

▶ Imperative (usually) interpreted dynamically-typed languages
(Smalltalk, Python, Ruby, JavaScript, etc).

▶ Functional (usually) compiled statically-typed languages (ML,
OCaml, SML, Haskell, Idris, Rust, etc).

The recent rise of popularity of the latter family of languages
means that the theory, finally, gets adopted into mainstream
practice.
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History of Programming Languages

Among those, the sequence LISP → ML → Miranda → Haskell is
rather interesting:

▶ LISP → ML replaced dynamic typing with a polymorphic type
system and infix syntax at the cost of losing both special
forms and reflection,

▶ ML → Miranda switched to lazy evaluation by default
(~special forms),

▶ Miranda → Haskell added type classes (~dynamic types),
reintroduced reflection, among many other things.

In other words, Haskell was designed to conveniently express things
commonly discussed in Programming Languages Theory (PLT).
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Summing It Up

▶ Programs represented using function calls and linear
sequences of instructions gave birth to modern computing.

▶ It is well-known that first-class functions (functions are values)
of functional programming produce a lot of useful expressive
power.

▶ Generalizing those things even further might give even more
expressive power.

▶ Haskell was designed to conveniently express such things. It
makes sense to discuss those generalizations using Haskell.

▶ As we shall see below, Haskell already has those things
generalized into Applicative and Monad type classes. Those
are well-known among Haskell programmers, and programs in
Haskell use these generalizations ubiquitously.
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Short Abstract

Programmer in Haskell
It is conventionally argued that many commonly useful things can’t
be expressed using Applicative and Monad type classes and
require special attention (e.g. throw/catch, tree transformations,
generalized patter matching).
This work aims to show that many of those examples can, in fact,
be expressed by reusing those well-known structures with minor (if
any) modifications.

Researcher in PLT
This work aims to apply the

KISS (Keep It Stupid Simple)
principle to programming language design.
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Technical Introduction
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Syntax
Math

𝑓(𝑎, 𝑏, 𝑛, 𝑚) ↦ 𝑎 𝑠𝑖𝑛(2𝛼) + 𝑏 𝑐𝑜𝑠(𝛼) + 𝑚𝑜𝑑(𝑛, 𝑚)

(𝑓 . 𝑔)(𝑥) ↦ 𝑓(𝑔(𝑥))

Haskell
f a b n m = a * sin (2 * alpha) + b * cos alpha

+ fromInteger (mod n m)

f . g = \x -> f (g x)
-- or
(.) f g = \x -> f (g x)
-- or
(.) f g x = f (g x)
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Haskell Syntax: Types

f :: Rational -> Rational -> Integer -> Integer
-> Rational

f a b n m = a * sin (2 * alpha) + b * cos alpha
+ fromInteger (mod n m)

(.) :: (b -> c) -> (a -> b) -> (a -> c)
f . g = \x -> f (g x)
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Haskell Syntax: Data Types

type Const a b = a

data Struct a b c
= NothingOfValue
| SomeFields

{ firstField :: a
, secondField :: b
, thirdField :: c
}

newtype FunArrow a b
= FunArrow { runFunArrow :: a -> b }
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Haskell Syntax: Type Classes

class Category cat where
id :: cat a a
(.) :: cat b c -> cat a b -> cat a c

data Category cat = Category
{ id :: cat a a
, (.) :: cat b c -> cat a b -> cat a c
}
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Haskell Syntax: Type Class Instances

instance Category (->) where
id x = x
(.) f g x = f (g x)

arrCategory = Category
{ id = \x -> x
, (.) = \f g x -> f (g x)
}

comp3 :: Category cat => cat c d -> cat b c
-> cat a b -> cat a d

comp3 f g h = f . g . h
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Why are type classes useful?

Mathematician
They can describe common algebraic structures. They allow to
reason about programs in terms of those structures.
class Monoid a where
mempty :: a
mappend :: a -> a -> a

instance Monoid Integer where
mempty = 0
mappend = (+)

Programmer
They are “interfaces” in OOP-speak. They allow one to write
generic functions applicable to many different types. That is, they
are a mechanism of ad-hoc polymorphism.
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What is an Applicative? Monad?
▶ A bit unconventionally defined hierarchy

-- Inject a pure value into computations over `f`
class Pointed f where
pure :: a -> f a

-- Of no consequence for this work
class Functor f where
fmap :: (a -> b) -> f a -> f b

-- Generalized application
class (Pointed f, Functor f) => Applicative f where
(<*>) :: f (a -> b) -> f a -> f b -- "apply"

-- Generalized semicolon operator
class Applicative f => Monad f where
(>>=) :: f a -> (a -> f b) -> f b -- "bind"
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(<*>) is a generalized application operator

▶ Take normal application and wrap everything with f

($) :: (a -> b) -> a -> b
f $ x = f x

class (Pointed f, Functor f) => Applicative f where
(<*>) :: f (a -> b) -> f a -> f b
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(>>=) is a generalized semicolon operator

something_t main () {
x = foo();
y = bar(x);
return baz(x, y);

}

▶ Assume everything is pure (without side-effects).
▶ Then, in Haskell/ML syntax this becomes

let x = foo in
let y = bar x in
baz x y
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(>>=) is a generalized semicolon operator

▶ Remember that, in general,

let x = f args in rest

▶ can be encoded in pure 𝜆-calculus as follows

(\x -> rest) (f args)
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(>>=) is a generalized semicolon operator

▶ In other words,

x = foo();
y = bar(x);
baz(x, y);

▶ can be encoded as

(\x -> (\y -> baz x y) (bar x)) foo

▶ which can be encoded as

let andThenContinueTo x f = f x in

foo `andThenContinueTo` (\x ->
bar x `andThenContinueTo` (\y ->
baz x y))
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What is the type of andThenContinueTo?
foo `andThenContinueTo` (\x -> rest)

▶ Obviously, this

andThenContinueTo :: a -> (a -> b) -> b
andThenContinueTo x f = f x

▶ Thus, (>>=) is just a generalization of this type!

class Applicative f => Monad f where
(>>=) :: f a -> (a -> f b) -> f b

▶ Note (a -> f b), not f (a -> b), the variable a plays a
variable binding here, not an argument to a function over f.

▶ Obviously

type Identity a = a
instance Monad Identity where
(>>=) = andThenContinueTo
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Consider this
main =
foo >>= (\x ->
bar x >>= (\y ->
baz x y))

▶ For Identity

instance Monad Identity where
(>>=) :: a -> (a -> b) -> b
(>>=) = andThenContinueTo

foo :: a
bar :: a -> b
baz :: a -> b -> c

▶ Thus

main :: c
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But there are other options, e.g.
main =
foo >>= (\x ->
bar x >>= (\y ->
baz x y))

▶ For (->) r

instance Monad ((->) r) where
(>>=) :: (r -> a) -> (a -> r -> b) -> (r -> b)
(>>=) ra f r = f (ra r) r

foo :: r -> a
bar :: a -> r -> b
baz :: a -> b -> r -> c

▶ Thus

main :: r -> c
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Consider what we just did

▶ We took an “imperative” program made of assignments

main =
foo >>= (\x ->
bar x >>= (\y ->
baz x y))

▶ and made a constant environment r propagate into all
sub-expressions

instance Monad ((->) r) where
(>>=) :: (r -> a) -> (a -> r -> b) -> (r -> b)
(>>=) ra f r = f (ra r) r

▶ by simply requesting an instance of main of a different type.
Thus, effectively, we changed semantics of main without
actually changing a single line of code in main!
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Side-note: syntax sugar

▶ For expressions like this

main =
foo >>= (\x ->
bar x >>= (\y ->
baz x y))

▶ Haskell has the following syntax sugar

main = do
x <- foo
y <- bar x
baz x y
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Side-note: Pointed, Monad ↦ Functor, Applicative

liftM :: Monad m => (a -> b) -> m a -> m b
liftM f ma = ma >>= pure . f

ap :: Monad m => m (a -> b) -> m a -> m b
ap mf ma = mf >>= \f -> liftM f ma

Also, Pointed, Applicative → Functor
apfmap :: Applicative f => (a -> b) -> m a -> m b
apfmap f ma = pure f <*> ma
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Why are Applicative and Monad useful?

▶ They can be used to express generic operators. E.g.

mapM :: Monad f => (a -> f b) -> [a] -> f [b]
mapM f [] = pure []
mapM f (a:as) = do
b <- f a
bs <- mapM f as
pure (b:bs)

▶ Using generic operators reduces boilerplate somewhat by
allowing for generic combinators.
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Why are Applicative and Monad useful?
▶ More importantly, those structures provide a convenient level

of abstraction that hides irrelevant details.

data Either a b = Left a | Right b

instance Pointed (Either e) where
pure = Right

instance Monad (Either e) where
Left e >>= _ = Left e
Right a >>= f = f a

dossier name = do
uid <- getUidByName name
birth<- getDateOfBirthByUid uid
addr <- getAddressByUid uid
pure (name, birth, addr)
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Why are Applicative and Monad useful?

In other words, they allow to define “functional”
and “imperative” domain specific languages (DSLs)

in Haskell.
▶ Example: parser combinator libraries.
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What are parsers combinators?

▶ Embedded domain specific languages (eDSLs) that allow one
to describe parsers.

▶ That is, they are eDSLs to parse stuff without any special
tools like Yacc, GNU Bison, etc.

▶ Usually they parse PEG [Ford, 2004].
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Example: A Tiny Parser Combinator Library
newtype SParser s e a = SParser
{ runSParser :: s -> Either e (a, s) }

instance Pointed (SParser s e) where
pure a = SParser $ \s -> Right (a, s)

instance Monad (SParser s e) where
p >>= f = SParser $ \s ->

case runSParser p s of
Left e -> Left e
Right (a, s') -> runSParser (f a) s'

f <|> g = SParser $ \s -> case runSParser f s of
Right x -> Right x
Left e -> case runSParser g s of

Right x -> Right x
Left e' -> Left (e `mappend` e')
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Example: A Tiny Parser Combinator Library

type Failures = [String]

type Parser a = SParser String Failures a
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Example: A Tiny Parser Combinator Library
eof :: Parser ()
eof = SParser $ \s -> case s of
[] -> Right ((), s)
_ -> Left ["expected eof"]

char :: Char -> Parser ()
char x = SParser $ \s -> case s of
[] -> Left ["unexpected eof"]
(c:cs) -> if (c == x)

then Right ((), cs)
else Left ["expected `" ++ [x]

++ "' got `" ++ [c] ++ "'"]

string :: String -> Parser ()
string [] = pure ()
string (c:cs) = char c >>= \_ -> string cs
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Example: A Tiny Parser Combinator Library

parseTest =
runSParser (string "foo") "foo bar"
== Right((), " bar")

&& runSParser (string "abb" <|> string "abc") "aba"
== Left ["expected `b' got `a'"

,"expected `c' got `a'"]

▶ Fun fact: This file was compiled from Org-Mode to TeX using
Pandoc, which is implemented using a similar parser
combinator library.
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Exceptionally Monadic Error Handling
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Exceptions

Python
try: expression1
except Type as e: expression2

C++/Java/etc
try { expression1 } catch (type_t e) { expression2 }

Haskell/etc
foo = expression1 `catch` (\e :: Type -> expression2)
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Contribution #1

catch without dynamic dispatch is Monadic (>>=)!
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Proof: Pragmatic programmer’s view

▶ Let us say, we have

data C e a

▶ let us assume, we know it is a Monad

pure :: a -> C e a
(>>=) :: C e a -> (a -> C e b) -> C e b

▶ we want to add

throw :: e -> C e a
catch :: C e a -> (e -> ?) -> ?

▶ what should be the type of catch? Generally,

catch :: C e a -> (e -> C f b) -> C g c
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Proof: Unification

catch :: C e a -> (e -> C f b) -> C g c

▶ Unify the types in

pure a `catch` f == pure a
-> c == a
throw e `catch` (\_ -> pure a) == pure a
-> c == b (== a)
throw e `catch` (\_ -> throw f) == throw f
-> g == f

▶ Which gives

catch :: C e a -> (e -> C f a) -> C f a
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Proof: e == f?

catch :: C e a -> (e -> C f a) -> C f a

▶ No:
▶ If computation throws then the type f in the handler “wins”,
▶ but if it does not throw then e is an empty type and it can be

substituted for any other type, including f,
▶ these two cases are mutually exclusive.

▶ Thus, catch has exactly the type of (>>=) in index e.
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Monad laws

But having the same type is not enough to be a proper Monad. It
needs to satisfy the Monadic laws.

-- `pure` is left identity for `(>>=)`
pure a >>= f == f a

-- `pure` is right identity for `(>>=)`
f >>= pure == f

-- `(>>=)` is associative
(f >>= g) >>= h == f >>= (\x -> g x >>= h)
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Definition: ConjoinedMonads

We shall say that a type m with two indexes is an instance of
ConjoinedMonads iff it is a Monad separately in each index

class ConjoinedMonads m where
pure :: a -> m e a
(>>=) :: m e a -> (a -> m e b) -> m e b

throw :: e -> m e a
catch :: m e a -> (e -> m f a) -> m f a

it satisfies the Monadic laws in both, and the following additional
equations hold

1. pure x `catch` f == pure x,

2. throw e >>= f == throw e.

https://oxij.org/thesis/PhD/ 43 / 79

https://oxij.org/thesis/PhD/


So, are there any instances?

Yes, lots.
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Instance: Either

throwE' :: e -> Either e a
throwE' = Left

catchE' :: Either e a -> (e -> Either e' a)
-> Either e' a

catchE' (Left e) h = h e
catchE' (Right a) _ = Right a

Proof
Since r = \a -> Either e a is a Monad,
r = \e -> Either e a is also a Monad. Either is ∨, which is
symmetric. Additional equations are easy to check.
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Instances: All instances of MonadError

This one is easy to prove.

class (Monad m) => MonadError e m
| m -> e where

throwError :: e -> m a
catchError :: m a -> (e -> m a) -> m a

Proof
The above implies e is constant for each given m. Which means
that if we substitute r = \e a -> m a into an instance of
ConjoinedMonads we’ll get an instance of MonadError. (Since it
already requires Monad m.)
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Instance: Parser combinators

▶ The Monad in e

throwSP :: e -> SParser s e a
throwSP e = SParser $ \_ -> Left e

catchSP :: SParser s e a
-> (e -> SParser s f a) -> SParser s f a

catchSP p f = SParser $ \s ->
case runSParser p s of

Right x -> Right x
Left e -> runSParser (f e) s
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Instance: Parser combinators

-- zero or more `p`
many :: ConjoinedMonads m => m e a -> m f [a]
many p = some p `catch` \_ -> pure []

-- instead of <|>

-- one or more `p`
some :: ConjoinedMonads m => m e a -> m e [a]
some p = fmap (:) p <*> many p
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Instance: More

▶ Other parser combinators, similarly (easy).
▶ All MonadThrow and MonadCatch instances without dynamic

dispatch (somewhat involved).
▶ Exception emulation with continuations (somewhat involved).
▶ And many others.

See the thesis for details.
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Contribution #2

ConjoinedMonads is not the only useful Cartesian
product of type classes.

For instance (see the thesis for details)
▶ Monad × Applicative adds throw/catch error handling to

Applicative expressions.
▶ Thus, throw/catch error handling × pure functions is an

instance of Monad × Applicative.
▶ With some modifications to the language this can work even

GHC’s imprecise exceptions × pure functions.

Other parts of the work also make interesting
Cartesian products.
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Contribution #2.5

▶ Our results adhere to the general structure of the “marriage”
framework of [Wadler and Thiemann, 2003].

▶ Therefore, all results applicable there are applicable here.
▶ For instance, one can take a Cartesian product with some

graded Monad of [Katsumata, 2014], thus producing an “effect
system”.

https://oxij.org/thesis/PhD/ 51 / 79

https://oxij.org/thesis/PhD/


Transforming Trees with Generalized
Applicative Expressions
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The Observation

Applicative parsers are cute!
data Device = Device
{ block :: Bool
, major :: Int
, minor :: Int }

exampleDevice :: Device
exampleDevice = Device False 19 1

class Parsable a where
parse :: Parser a

instance Parsable Device where
parse = pure Device <*> parse <*> parse <*> parse
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The Idea

Why can’t we do the same for other kinds
transformations?

parseDevice
= pure Device <*> parse <*> parse <*> parse

-- pretty-printing
showDevice
= depure unDevice <**> show <**> show <**> show

-- "mapping" between values
mapDevice
= depure unDevice <**> not <**> (+ 100) <**> (+ 200)
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The Idea Formalized: Applicative-like
▶ The Applicative operator

(<*>) :: f (a -> b) -> f a -> f b

▶ follows the following pattern

plug :: f full -> g piece -> f fullWithoutThePiece

▶ contrast to the usual composition

compose :: f fullWithoutThePiece -> g piece -> f full
-- or
compose' :: g piece -> f fullWithoutThePiece -> f full

▶ The main point is to decide on all data types and the way to
assemble results first and then delegate handing of parts to
subcomputations.

▶ Such operators we shall call “Applicative-like”.
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Can we use the same idea for other kinds of
transformations?

Yes, we can!
▶ “Destruct” the data type

unDeviceLISP :: Device -> (Bool, (Int, (Int, ())))
unDeviceLISP (Device b x y) = (b, (x, (y, ())))

▶ Invent a plug

chop :: (s, (a, b)) -> (s -> a -> t) -> (t, b)
chop (s, (a, b)) f = (f s a, b)

chopR :: (r -> (s, (a, b)))
-> (s -> a -> t) -> (r -> (t, b))

chopR o f r = chop (o r) f
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Pretty-printer: Done!
showDevice :: Device -> ([String], ())
showDevice = depureShow unDeviceLISP `showa` show

`showa` show
`showa` show

depureShow :: (r -> b) -> r -> ([String], b)
depureShow f r = ([], f r)

showa :: (r -> ([String], (a, b)))
-> (a -> String)
-> (r -> ([String], b))

showa st f = chopR st (\s a -> (f a):s)

testShowDevice :: String
testShowDevice = runShow $ showDevice exampleDevice

-- == "False 19 1"
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Then, this can be trivially extended to

▶ maps between data types

mapDevice :: Device -> (Device, ())
mapDevice = depureMap Device unDeviceLISP

`mapa` not
`mapa` (+ 100)
`mapa` (+ 200)

testMapDevice :: Device
testMapDevice = runMap $ mapDevice exampleDevice

-- == Device True 119 201
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Then, this can be trivially extended to

▶ zips between data types

zipDevice :: Device -> Device -> (Device, (), ())
zipDevice = depureZip Device unDeviceLISP unDeviceLISP

`zipa` (&&)
`zipa` (+)
`zipa` (+)

testZipDevice :: Device
testZipDevice = runZip
$ zipDevice exampleDevice testMapDevice
-- == Device False 138 202

▶ and similarly for more structures
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Then, this can be trivially extended to
▶ Generalized “stack”-machine computations (with arbitrary

data types for “stacks”)

remapDevice :: Device -> (Device, ())
remapDevice = depureMap Device unDeviceLISP
`andThen` pop
`push` True
`mapa` id
`andThen` pop
`andThen` dup
`mapa` id
`mapa` id

testRemapDevice :: Device
testRemapDevice = runMap $ remapDevice exampleDevice

-- == Device True 1 1
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Scott-encoding

▶ “Destruction” to LISP is not the only possible way, this also
works with Scott-encoding

unDeviceScott :: Device
-> (Bool -> Int -> Int -> c) -> c

unDeviceScott (Device b x y) f = f b x y

chopS :: ((s -> a -> b) -> c)
-> (s -> a -> t)
-> ((t -> b) -> c)

chopS i f o = i $ \s a -> o (f s a)

▶ Examples look exactly the same, only the types change.
▶ But chops that fold more than one type at the same time

are a bit involved. See the thesis.
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Formal Account

▶ Applicative is generalized 𝜆-application.
▶ Our structures are instances of generalized dependently typed

𝜆-application!

class ApplicativeLike f where
type C f a b :: * -- type of arrow under `f`
type G f a :: * -- type of argument dependent on `f`
type F f b :: * -- type of result dependent on `f`
(<**>) :: f (C f a b) -> G f a -> F f b
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Contributions

#3
Applicative can be naturally generalized into a

dependently typed structure we call
ApplicativeLike. (Which happens to be both
simpler and more general than superapplicatives

of [Bracker and Nilsson, 2018].)
#4

It has a bunch of practically useful instances:
pretty-printing, mapping, zipping, etc for simple

data types of a single constructor.
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Contribution #5

We can make instances of Cartesian products of
Monad and ApplicativeLike.

chopE :: Either e (s, (a, b))
-> (s -> a -> Either e t)
-> Either e (t, b)

chopE i f = do
(s, (a, b)) <- i
fsa <- f s a
pure (fsa, b)

chopES :: ((Either e s -> a -> b) -> c)
-> (s -> a -> Either e t)
-> ((Either e t -> b) -> c)

chopES i f o = i $ \s a -> o (s >>= \s' -> f s' a)
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Transforming Trees with Indexed
Monads
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The Idea

Monadic parser combinators are cute!
Can’t we make them “parse” arbitrary data
types/trees, not just Streams (Strings)?

▶ The problem

newtype SParser s e a = SParser
{ runSParser :: s -> Either e (a, s) }

▶ The solution

newtype IxSParser e i j a = IxSParser
{ runIxSParser :: i -> Either e (a, j) }
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Indexed Monads

class IxPointed m where
ipure :: a -> m i i a

class IxFunctor f where
ifmap :: (a -> b) -> f i j a -> f i j b

class (IxPointed m, IxFunctor m) => IxApplicative m where
(<*+>) :: m i j (a -> b) -> m j k a -> m i k b

class IxApplicative m => IxMonad m where
(>>=+) :: m i j a -> (a -> m j k b) -> m i k b
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Yes, we can!

▶ For instance

newtype IxSParser e i j a = IxSParser
{ runIxSParser :: i -> Either e (a, j) }

instance IxPointed (IxSParser e) where
ipure a = IxSParser $ \i -> Right (a, i)

instance IxMonad (IxSParser e) where
p >>=+ f = IxSParser $ \i ->

case runIxSParser p i of
Left x -> Left x
Right (a, j) -> runIxSParser (f a) j
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Yes, we can!

▶ The other index

throwIxSP :: e -> IxSParser e i j a
throwIxSP e = IxSParser $ \_ -> Left e

-- Note that this keeps indices as is,
-- since it is a `Monad`,
-- not `IxMonad` in `e`
catchIxSP :: IxSParser e i j a

-> (e -> IxSParser f i j a)
-> IxSParser f i j a

catchIxSP m f = IxSParser $ \i ->
case runIxSParser m i of

Right x -> Right x
Left e -> runIxSParser (f e) i
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Cartesian Product

class MonadXIxMonad m where
icpure :: a -> m e i i a
icbind :: m e i j a -> (a -> m e j k b) -> m e i k b

icthrow :: e -> m e i j a
iccatch :: m e i j a -> (e -> m f i j a) -> m f i j a
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Interesting Parts
▶ It can actually “parse” arbitrary data types/trees. (See the

thesis.)
▶ Combinators many and some are as interesting as before.
▶ But now also

-- zero of more `p` separated by `sep`
sepBy :: MonadXIxMonad m

=> m e i i a -> m e i i b -> m f i i [a]
sepBy p sep = _

-- one or more `p` separated by `sep`, that is
-- `p` followed by zero or more `sep >> p`
sepBy1 :: MonadXIxMonad m

=> m e i j a -> m e j i b -> m e i j [a]
sepBy1 p sep = _

exampleSepBy1 = sepBy1 integer comma
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But there is more!

class IxMonadXIxMonad m where
iicpure :: a -> m e i u i a
iicbind :: m e i u j a

-> (a -> m e j u k b) -> m e i u k b

iicthrow :: e -> m e i i u a
iiccatch :: m e i j u a

-> (e -> m f j k u a) -> m f i k u a

▶ And this also has an instance.
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Contributions

#6
Monadic parser combinators can be generalized into
indexed Monadic “parser” combinators for arbitrary

data types/trees.
#7

They are instances of MonadXIxMonad and
IxMonadXIxMonad Cartesian products.
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Conclusions
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In Terms of Related Works
▶ The first part, essentially, extends the work of [Wadler, 1992]

by showing that Monads can also be used for proper error
handling (and not just “hiding errors from the higher-level
interpreter”), the observation which we formalized into
ConjoinedMonads structure.

Similarly to how Wadler’s Monad instances influenced the
design of modern Haskell, our instances also hint at new
language design opportunities.

▶ The second part extends the work of [McBride and Paterson,
2008] on Applicatives by showing other interesting
structures that follow the same general form of expressions
but allow for more sophisticated transformations, a structure
which we formalized into the ApplicativeLike type class.

▶ The third part, essentially, extends works on parser
combinators, most notably the work of [Leijen and Meijer,
2001], to “parsing” arbitrary data types/trees.
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The Main Points

▶ catch without dynamic dispatch is Monadic (>>=). Lots of
instances. (But mostly informative, hard to apply to practice
at the moment.)

▶ Applicative can be generalized into dependent types to
produce ApplicativeLike. Lots of immediately practically
useful instances.

▶ Monads when generalized into indexed Monads have “parser”
combinators that can “parse” data types/trees as instances.

▶ Many interesting structures can be represented as Cartesian
products of type classes where one part represents error
handling, while the other represents normal computation.

Questions?
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