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Abstract

It is well-known that very simple theoretic constructs such as Either (type-theoretic equivalent
of the logical “or” operator), State (composable state transformers), Applicative (generalized
function application), and Monad (generalized sequential program composition) structures (as they
are named in Haskell) cover a huge chunk of what is usually needed to elegantly express most
computational idioms used in conventional programs. However, it is conventionally argued that
there are several classes of commonly used idioms that do not fit well within those structures,
the most notable examples being transformations between trees (data types, which are usually
argued to require ether generalized pattern matching or heavy metaprogramming infrastructure)
and exception handling (which are usually argued to require special language and run-time support).

This work aims to show that many of those idioms can, in fact, be expressed by reusing those
well-known structures with minor (if any) modifications. In other words, the purpose of this work is
to apply the KISS (Keep It Stupid Simple) and/or Occam’s razor principles to algebraic structures
used to solve common programming problems.

Technically speaking, this work aims to show that natural generalizations of Applicative and
Monad type classes of Haskell combined with the ability to make Cartesian products of them pro-
duce a very simple common framework for expressing many practically useful things, some of the
instances of which are very convenient novel ways to express common programming ideas, while
others are usually classified as effect systems. On that latter point, if one is to generalize the pre-
sented instances into an approach to design of effect systems in general, then the overall structure of
such an approach can be thought of as being an almost syntactic framework which allows different
effect systems adhering to the general structure of the “marriage” framework [28] to be expressed
on top of. (Though, this work does not go into too much into the latter, since this work is mainly
motivated by examples that can be immediately applied to Haskell practice.)

Note, however, that, after the fact, these technical observation are completely unsurprising:
Applicative and Monad are generalizations of functional and linear program compositions respec-
tively, so, naturally, Cartesian products of these two structures ought to cover a lot of what pro-
grams usually do.

1 Introduction
First programmable computers like Colossus (1943-1945) and even the early revisions of ENIAC

(1945-1955) were not stored-program computers and could only be programmed using plugboards and
mechanical switches.

IBM 650 (1953-1969), the first mass-produced computer, used a magnetic drum as its memory
(usually initially loaded from punch-cards) and each instruction’s operation code (opcode) had to
explicitly specify the address of the next instruction (similarly to how jump instructions of modern
Assembly languages do).
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The first computer with proper hardware support for subroutine calls of non-fixed-level nesting
depth (that is, supporting recursion and arbitrary modularity) seems to be the PDP-11 (1970-1990),
even though the support for simple subroutines was present even on the early ENIAC.

What these early examples show is that the very concept of a mostly linear program organized
using modular possibly recursive subroutines had no hardware support until 1970s. Most interestingly,
however, as soon as those things got hardware support, the UNIX and the C programming language [6,
7, 22] were born. Both mostly equivalent hardware and those software systems are still ubiquitous
even today.

(One could argue that the only big change in the commonly employed computer architecture since
1970s is the popularization of SIMD for numerical computations. That is, the fact that almost all
consumer-facing computers now come with GPUs out-of-the box. There is also a revival of hardware
virtualization, first introduced on IBM System/370 in 1972 and then forgotten until mid-2000s, but
both hardware support for arbitrarily nested virtualization and software use of those features, a good
contemporary example of which would be QubesOS [21], are still rather lacking at the moment of
writing of this work.)

The history of high-level programming languages starts with FORTRAN initially developed by
John Backus for IBM 704 around 1956 and LISP initially developed by John McCarthy at MIT
around the same time.

FORTRAN family of imperative compiled strictly-typed languages, including ALGOL, C and
their descendants can be viewed as, at first, straightforward attempts to make a universal Assembly
language, with later horizontal-gene-transfer/incorporation of structured programming constructs such
as if-then-else statements, loops (both FORTRAN 77), arrays, modules (both Fortran 90, the later
is also C++20), sometimes mixed with some object-oriented constructs from Simula (of which C++ is
the prime example), and, after 50-odd years, ideas from functional programming (C++11 and later).

LISP family of functional interpreted dynamically-typed languages, by contrast, was going the
other direction by starting from 𝜆-calculus developed by Alonzo Church and his students in 1930s
and 1940s with the explicit goal of making a minimalist universal computational formalism [2, 3]
and building on top. For the purposes of this discussion two most important features of LISP were
the ability to declare new language constructs using so called “special forms” (which were, effectively,
partially lazy functions in an language with eager evaluation) and the ability to describe its own
programs (reflection). The latter property meant that runtime code generation and meta-programming
were easy, and, even more importantly, the language could trivially interpret itself, thus allowing
arbitrary extensions. The end result is that most variants of LISP to this day can evaluate each
other’s terms.

Various mixes of the two approaches appeared over the years. Two noteworthy families are

• imperative (usually) interpreted dynamically-typed languages starting with Smalltalk and rep-
resented by modern Python, Ruby, JavaScript, among others; and

• functional (usually) compiled statically-typed languages starting with ML and represented by
modern OCaml, SML, and Haskell, among others.

Among those, the sequence of languages LISP → ML → Miranda → Haskell is rather interesting
because the step from LISP to ML replaced dynamic typing with a polymorphic type system and infix
syntax at the cost of loosing both special forms and reflection, the step to Miranda switched to lazy
evaluation by default (thus giving most of what special forms did), and the step to Haskell added type
classes (thus giving a lot of what dynamic types did) and reintroduced reflection, among many other
things.

In other words, Haskell was designed to conveniently express things commonly discussed in Pro-
gramming Languages Theory (PLT) as its terms look similar to those used in school-level mathematics,
strictly-typedness allows (but not guarantees) it to be efficient, and it has enough pieces of LISP and
more powerful type systems (like dependent types) to express (or at least hint at how they could be
expressed) concepts applicable to whole swaths of programming languages. And indeed, most of the
literature cited in this work uses Haskell or a variant of ML.
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Haskell is also surprisingly popular for an “academic” language consistently staying in Top-50 of
TIOBE Index [26] (measures search requests), with its the most popular public code repository of
Hackage [5] listing over 5000 packages.

As a side note, the usual way to explain why imperative languages (like FORTRAN, ALGOL,
C) “won” over LISP is to note that the latter required too many transistors to evaluate at agreeable
speeds. Where FORTRAN emitted a single Assembly add, LISP-machine needed a whole lot of run-
time type checking. Then, the resurgence of popularity of Smalltalk descendants like Python, Ruby,
JavaScript in late 1990s and early 2000s can be explained by, on the one hand, their general semantic
similarity to FORTRAN descendants but with higher levels of programmer satisfaction (simpler syntax
without explicit type signatures, automatic memory management, etc), and, on the other hand, the
rise of the number of transistors available on an average consumer CPU, followed by the advent of
just-in-time (JIT) compilation. Though, note that most high-performance code for systems written in
those languages is still implemented in C and FORTRAN to be called by said interpreters via foreign
function interface (FFI). For instance, NumPy [19], a Python library for high-performance numerical
computations (and probably the most well-known Python library in academic circles), is a Pythonic
wrapper over a bunch of C (and some FORTRAN, translated into C) code.

The resurgence of interest in the functional programming in the later half of 2000s, on the other
hand, comes with the advent of compilation techniques which made them usable in high-performance
software systems. Among other things, this allows some of those languages to produce complete or
almost complete full-stack mono-language systems. For instance, MirageOS project [13], a modular
operating system written entirely in ML. Similarly, Go [24], Haskell [4], and Rust [25] standard libraries
also try to limit their use of FFIs. Which, of course, can be seen as either a good thing (“Yay!
Readable code in a sane safe language!”) when compared to languages that use a lot of C FFIs
in their standard libraries (e.g. Python) or a bad thing (“Uhg! Now every language infrastructure
reimplements everything from scratch!”).

Note, however, that conventional CPUs are, essentially, interpreters for machine code (sequences
of opcodes) compiled into hardware (the metal traces and semiconductor gates of which are then
“interpreted” by the physical laws of electromagnetism). Which is why languages that are closer to
Assembly are easier to compile in such a way that semantically efficient source language programs
are compiled into opcode programs that are efficient to evaluate on those machines. GPUs discussed
above, first marketed as “graphical accelerators”, are now considered an essential piece of modern
computing machinery, making modern image rendering and processing techniques, among other things,
practically viable. Therefore, it would be interesting to see software systems developed specifically for
computers with “FPGA accelerators”, since graph reductions performed by interpreters of functional
programming languages can be made much more efficient on such machines (e.g., see Reduceron [17,
18] project).

That is to say, it is not entirely obvious that FORTRAN descendants would still be “winning” on
the computer systems running in the not so far future, as programs for computers with reversible
computations (like raw electromagnetism and quantum computers) are very much functional [1, 23],
thus it might be both more efficient and cognitively simpler to implement those systems in functional
languages from top to bottom.

In any case, this work deals with somewhat more conventional computations. The main algebraic
structures discussed in this work are Monads introduced to functional programming from Category
theory by Moggi [15, 16] and popularized by Wadler [27] and Applicative Functors introduced by
McBride and Paterson [12]. These two structures can be seen as a straightforward generalizations
of linear and functional program compositions respectively, that is, generalizations of the “semicolon”
and “function call” operators.

2 Extended Abstract
If one is to ask a practicing Haskell programmer to succinctly describe Applicative and Monad

type classes to a practicing programmer in an imperative language, something like “an overloadable
function application/call operator” and “an overloadable semicolon operator” would probably be heard.
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These structures are useful for a couple of reasons.

• Firstly, using generic operators reduces boilerplate somewhat by allowing for generic combinators
(e.g. mapM).

• Secondly, and more importantly, those structures provide a convenient level of abstraction that
hides irrelevant details (of which Either Monad that hides the Left half of the computation until
it becomes relevant is a prime example).

Think call and ret operators of most conventional assembly languages, a programmer in CPU
microcode (or sufficiently RISC assembly) might ask why do you even need those instructions when
you can just push/pop the instruction pointer and jump. Similarly, a programmer for IBM 650 might
argue that even linear sequencing of instructions and the instruction pointer are superfluous, each
instruction could just explicitly specify the address of the next instruction. Similarly, for Applicative
and Monad, while one could just use particular (<*>) and (>>=) implementations explicitly, having
those operators to represent an even higher level of abstraction can be even more convenient. (Though,
it can be problematic to show that convenience to a programmer in a language lacking the means to
express it, like with Either Monad.)

Interestingly however, after explaining why Applicative and Monad are useful and pointing that
they are indeed very popular in Haskell programs one will be faced with the fact that, apparently,
there are not many commonly applicable instances of these structures. In fact, just Either and State
together seem to cover almost everything:

• computations that might fail usually wrap themselves into Either,
• a main function in a Haskell program, more or less, simply interprets a State transformer over

a RealdWorld that computes program outputs from program inputs (i.e. IO Monad, though it
can have other interpretations),

• most other things are either particular cases (e.g. Maybe), compositions of those two (parsing, for
instance, is just a composition of State and Either with Streams in place of the RealdWorld),
or mechanical transformations (e.g. Scott-encoding) of them.

The fact that Either and State Applicatives and Monads can express so much makes it even
more interesting to carefully look at the frequently used things they, apparently, can not express.

Firstly, note that apart from the pure Either and its particular cases Haskell provides a bunch
of other mechanisms for error handling: most notably, imprecise exceptions and several different type
classes claiming to implement generic throw and catch with slightly different semantics.

Secondly, note that type State s a = s -> (a, s) uses a single type s on both sides of the
arrow. If one is to take a fundamentalist view that all computations are just compositions of state
transformers and should be expressed as such, then it is immediately apparent that State is too
restrictive for the general use case as it can not express state transitions between arbitrary data types.

In other words, while a fundamentalist Haskell programmer could feel content parsing Streams
(in particular, Strings) into data types with the help of a parser combinator library like Parsec [11],
to do most other things he/she would have to succumb to using several different approaches to error
handling while pattern-matching data types manually or with libraries such as SYB [10], Uniplate [14],
Multiplate [20], and Lenses [8, 9].

Which is not to say that doing all those things is inherently bad, but it is interesting to see just how
much can be done with just Either, State, Applicative, and Monad and their natural extensions,
that is to say that it is interesting to see how much can be done with very basic theoretical constructs
and their combinations. The purpose of this work is to show that the set of things expressible using
these structures is surprisingly large. Or, more specifically, to show that all of the problems commonly
thought of as requiring special care mentioned above can in fact be solved by reusing those well-known
structures with minor (if any) modifications.

3 Contributions
Specifically, every item in the following list, to our best knowledge, is a headline contribution.
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• We note that the types of

throw :: e -> c a
catch :: c a -> (e -> c a) -> c a

operators are special cases of Monadic pure (return) and (>>=) (bind) operators

pure :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b

(substitute [𝑎 ↦ 𝑒, 𝑚 ↦ 𝜆_.𝑐 𝑎] into their types).

• Hence, a type of computations c e a with two indexes where e signifies a type of errors and a
signifies a type of values can be made a Monad twice: once for e and once for a.

class ConjoinedMonads c where
pure :: a -> c e a
(>>=) :: c e a -> (a -> c e b) -> c e b

throw :: e -> c e a
catch :: c e a -> (e -> c f a) -> c f a

Moreover, for such a structure throw is a left zero for (>>=) and pure is a left zero for catch.

• We prove that the type of the above catch is most general type for any Monadic structure
\a -> c e a with additional throw and catch operators satisfying conventional operational
semantics (via simple unification of types for several equations that follow from semantics of
said operators). Or, dually, we prove that (>>=) has the most general type for expressing
sequential computations for Monadic structure \e -> c e a (with operators named throw and
catch) with additional pure and (>>=) operators satisfying conventional operational semantics.

• Substituting a Constant Functor for c into ConjoinedMonads above (i.e., fixing the type
of errors) produces the definition of MonadError, and, with some equivalent redefinitions,
MonadCatch. Similarly, IO with similar redefinitions is a ConjoinedMonads instance too (with
the usual caveats).

• ExceptT and some other lesser known and potentially novel concrete structures have operators
of such types and their semantics matches (or they can be redefined in an equivalent way such
that the core part of the resulting structure then matches) the semantics of Monad exactly.

• Monad type class has a well-known “fish” representation where “bind” (>>=) operator is replaced
by “fish” operator

(>=>) :: (a -> m b) -> (b -> m c) -> (a -> m c)

and Monad laws are just monoidal laws.
Hence, all those structures can be seen as a pairs of monoids over bi-indexed types with identity
elements for respective binds as left zeros for conjoined binds. We find this symmetry to be
hypnotic and generalize it further into an observation that it is an instance of Cartesian products
of type classes.

• The answer to “Why didn’t anyone notice this already?” seems to be that this structure cannot
be expressed well in Haskell.

• Meanwhile, it has at least several practically useful instances:
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– Parser combinators that are precise about errors they produce and that reuse common
Monadic combinators for both parsing and handling of errors. For instance, the type of
many for such a parser combinator guarantees that it cannot throw any errors
many :: c e a -> c f [a]

(since f can be anything, it cannot be anything in particular) and
choice :: [c e a] -> c e a

is an instance of Monadic sequence combinator.
– Conventional exceptions expressed using Reader Monad and second-rank callCC (the whole

idea of which seems to be novel).
– Error-explicit IO, the latter and similar structures with similar motivation were proposed

before, but they did not use the fact that their “other half” is a Monad too.

• We notice that many practically interesting structures can be described as Cartesian product of
a structure handling errors and a structure handling computations, which suggests an interesting
direction is programming language design.

• We notice that many Applicative computations can be interpreted as providing a mechanism
to construct a data type with “ports” “pluggable” by subcomputations. We observe that it
is this property that makes them so much more convenient in practice than the usual way of
building the same computations using conventional composition.

• We distill this observation into a more general algebraic structure of (and/or technique
for expressing) “Applicative-like” computations and demonstrate several other (that is,
non-Applicative) instances of this structure, which includes a curious family of structures
that work with Scott-encoded data types as if they are heterogeneous lists of typed values.

• Then, we show that there is, in fact, an infinite family of such “Applicative-like” structures.
This family can be succinctly described as a family of computations for generalized multi-stack
machines with arbitrary data types and/or functions as “stacks”.

• Then, we observe that our “Applicative-like” is actually a natural generalization of the con-
ventional Applicative into dependent types.

• We notice that Monadic parser combinators can be generalized into indexed Monads thus allowing
one to “parse” (transform between) arbitrary data types/trees.
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